The discovery of a novel compound with potent antitumor activity: virtual screening, synthesis, biological evaluation and preliminary mechanism study
نویسندگان
چکیده
Farnesyltransferase has been regarded as a promising drug target against cancer as it is critical for membrane association of several signal transduction proteins. In this study, a novel farnesyltransferase inhibitor (IMB-1406) was identified through virtual screening. It exhibits stronger potency (IC50s: 6.92-8.99 μM) than Sunitinib against all of the tested cancer cell lines. Preliminary studies on mechanism reveal that IMB-1406 induces apoptosis in HepG2 cells by arresting the cell cycle at the S phase, altering anti- and pro-apoptotic proteins leading to mitochondrial dysfunction and activation of caspase-3. This anti-tumor effect is most probably related to the inhibition of farnesyltransferase as indicated by molecular docking. Overall, IMB-1406 is a novel lead compound with potent antitumor activity and deserves further structural modifications.
منابع مشابه
Design, Synthesis and Biological Evaluation of new 1,4-Dihydropyridine (DHP) Derivatives as Selective Cyclooxygenase-2 Inhibitors
As a continuous research for discovery of new COX-2 inhibitors, chemical synthesis, in vitro biological activity and molecular docking study of anew group of 1,4-dihydropyridine (DHP) derivatives were presented. Novel synthesized compounds possessing a COX-2 SO2Me pharmacophore at the para position of C-4 phenyl ring, different hydrophobic groups (R1) at C-2 position and alkoxycarbonyl groups (...
متن کاملDesign, Synthesis and Biological Evaluation of new 1,4-Dihydropyridine (DHP) Derivatives as Selective Cyclooxygenase-2 Inhibitors
As a continuous research for discovery of new COX-2 inhibitors, chemical synthesis, in vitro biological activity and molecular docking study of anew group of 1,4-dihydropyridine (DHP) derivatives were presented. Novel synthesized compounds possessing a COX-2 SO2Me pharmacophore at the para position of C-4 phenyl ring, different hydrophobic groups (R1) at C-2 position and alkoxycarbonyl groups (...
متن کاملNovel N-2-(Furyl)-2-(chlorobenzyloxyimino) ethyl Piperazinyl Quinolones: Synthesis, Cytotoxic Evaluation and Structure-activity Relationship
Quinolone antibacterials are one of the most important classes of pharmacological agents known as potent inhibitors of bacterial DNA gyrase and topoisomerase IV that efficiently inhibit DNA replication and transcription by generating several double-stranded DNA break. Some quinolone derivatives demonstrated inhibitory potential against eukaryote topoismarase II and substantial dose-dependent cy...
متن کاملNovel N-2-(Furyl)-2-(chlorobenzyloxyimino) ethyl Piperazinyl Quinolones: Synthesis, Cytotoxic Evaluation and Structure-activity Relationship
Quinolone antibacterials are one of the most important classes of pharmacological agents known as potent inhibitors of bacterial DNA gyrase and topoisomerase IV that efficiently inhibit DNA replication and transcription by generating several double-stranded DNA break. Some quinolone derivatives demonstrated inhibitory potential against eukaryote topoismarase II and substantial dose-dependent cy...
متن کاملDesign, Synthesis and Biological Activity of 4,6-disubstituted Pyridin-2(1H)-ones as Novel Inhibitors of Soluble Epoxide Hydrolase
Soluble epoxide hydrolase enzyme is a promising therapeutic target for hypertension, vascular inflammation, pain and some other risk factors of cardiovascular diseases. The most potent sEH inhibitors reported in the literature are urea-based ones which often have poor bioavailability. In this study, in a quest for finding potent inhibitors of soluble epoxide hydrolase, some 4,6-disubstituted py...
متن کامل